Monatshefte für Chemie 112, 675-678 (1981)

Monatshefte für Chemie

© by Springer-Verlag 1981

Hetarylpyrazoles III¹. Synthesis of Some 5-Azolylpyrazoles²

Short Communication

Misbahul A. Khan* and Antonio C. C. Freitas

Seção de Quimica, Instituto Militar de Engenharia, Praia Vermelha, 22290 Rio de Janeiro, RJ, Brasil

(Received 7 January 1981. Accepted 10 February 1981)

Some 5-azolylpyrazoles were obtained by the nucleophilic displacement of 5-chloropyrazoles.

(Keywords: Chloropyrazole; Nucleophilic reactions)

Hetarylpyrazole III¹. Synthese einiger 5-Azolylpyrazole (Kurze Mitteilung)

Es wurden einige 5-Azolylpyrazole über nucleophile Substitution am 5-Chloropyrazol synthetisiert.

Introduction

Some derivatives of pyrazole in which a pyrazole ring is linked to another pyrazole ring or to another five membered ring are known in the literature³⁻⁵ and some of these are reported to have antibacterial and antimicrobial activity⁵. During the course of our work on the nucleophilic substitution of 5-halopyrazoles² we obtained some pyrazoles linked to other azoles and would like to report the synthesis of these compounds.

Results and Discussion

5-Chloropyrazole can undergo nucleophilic substitution but we have found that unless activated by other groups the replacement needs vigorous conditions. However, the presence of an electron-withdrawing group in position 4 facilitates the substitution by appropriate nucleophiles, and in dimethyl sulfoxide solvent this substitution may take place even at room temperature². Thus using azoles such as pyrazole and methylimidazole having a free NH in dimethyl sulfoxide in the presence of sodium hydride, 5-chloro-3-methyl-4-nitro-1-phenylpyrazole (1) gave the corresponding 5-hetarylpyrazoles (2) and (4) respectively in good yields. Using 4-nitroimidazole and 1,2,4-triazole the corresponding compounds (3) and (5) were obtained. The structures of these azolylpyrazoles were confirmed by elemental analysis, infrared and proton magnetic resonance spectra (Table 1).

The 5-chloro group of 1 can also be replaced by nitrile⁶ and the 5cyanopyrazole thus obtained on further reaction with sodium azide gave 5-(3'-methyl-4'-nitro-1'-phenylpyrazol-5'-yl)-tetrazole (6). The replacement of the chloro by the azido group and subsequent treatment with cyanacetamide has earlier been reported to give 1,2,3-triazolesubstituted pyrazole or the condensed ring system pyrazolo[3,4-e]-1,2,3-triazolo[1,5-a]pyrimidine⁸.

Acknowledgement

Thanks are due to coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Cíentífico e Tecnológico (CNPq), and Financiadora de Estudos e Projetos (FINEP) for continuous support.

Experimental

The proton magnetic resonance spectra (PMR) were obtained on a Hitachi Perkin-Elmer model R-20B spectrometer operating at 60 Mc/s (tetramethylsilane as internal standard). The infrared (IR) absorption spectra were taken by the Perkin-Elmer model 727 spectrophotometer and were measured in potassium bromide disks. Melting points (mp) were determined with a Fisher-Johns apparatus and are uncorrected. Elemental analyses were determined on a Perkin-Elmer model 240.

4-Nitroimidazole⁹ and 5-cyano-3-methyl-4-nitro-1-phenylpyrazole⁶ were obtained according to the reported methods.

Arylation: An equimolar mixture (0.005 mol) of an azole and 5-chloro-3methyl-4-nitro-1-phenylpyrazole and sodium hydride (0.02 mol) in 15 ml of dimethyl sulfoxide was stirred for 24 h at room temperature. The reaction mixture was diluted with ice-cold water and extracted with chloroform. The residue obtained on evaporating the solvent was crystallized from an appropriate solvent to give the compounds 2-5 (Table 1).

5-(3'-Methyl-4'-nitro-1'-phenylpyrazol-5'-yl)tetrazole (6)

A mixture of 0.5 g of 5-cyano-3-methyl-4-nitro-1-phenylpyrazole⁶, 0.13 g of sodium azide and 0.12 g of ammonium chloride in 7 ml of N,N-dimethyl-formamide was heated in an oil bath (120-130°) with stirring for a period of 10 h and then at room temperature for further 24 h. The reaction mixture was diluted with ice-cold water, and acidified with 5% hydrochloric acid. The precipitate was filtered off, washed, dried and crystallized from a mixture of acetone and light petroleum (bp 40-60°) to give **6**.

$\begin{array}{l} \text{PMR} \ \delta(J \ \text{in} \ \text{Hz}) \\ \text{in CDCl}_3 \end{array}$	2.68 (3H, s, Me); 6.49 (1H, t, $J_{3,4} = J_{4,5} = 2.5$, H-4); 7.0-7.50 (5H, m, Ph); 7.68 (1H, d, $J_{3,4} = 2.5$, H-3); 7.71 (1H, d, $J_{4,5} = 2.5$, H-5)	$\begin{array}{l} 2.69 \; (3\mathrm{H},\mathrm{s},Me);\; 7.00-\\ 7.50 \; (5\mathrm{H},\mathrm{m},Ph);\; 7.53 \; (1\mathrm{H},\mathrm{d},J_{2,5}=2,\mathrm{H}\cdot2);\; 7.88\\ \mathrm{d},J_{2,5}=2,\mathrm{H}\cdot2);\; 7.88\\ (1\mathrm{H},\mathrm{d},J_{2,5}=2,\mathrm{H}\cdot5) \end{array}$	2.10 (3H, s, Me imidazole); 2.70 (3H, s, Me pyrazole); 6.89 (1H, d, $J_{4,5} = 1.5$, H-4); 7.04 (1H, d, $J_{4,5} = 1.5$, H-5); 7.00-7.50 (5H, m, Ph)	2.70 (3H, s, Me); 7.10 7.50 (5H, m, Ph); 8.10 (1H, s, H-3); 8.39 (1H, s, H-5)	2.64 (3H, s, Me); 7.39 (5H, s, Ph) ^b
$IR(cm^{-1})$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3120,\ 3100,\ 1595,\ 1580,\\ 1550\ (\mathrm{NO}_2),\ 1510,\ 1500\\ (\mathrm{NO}_2),\ 1460,\ 1440,\ 1380,\\ 1368,\ 1348\ (\mathrm{NO}_2),\ 1285,\\ 1045,\ 825,\ 775,\ 701 \end{array}$	$3160, 3130, 1600, 1585, 1500 (NO_2), 1440, 1380, 1350 (NO_2), 1300, 1280, 860, 770$	$\begin{array}{c} 3125, \ 3120, \ 1605, \ 1585, \\ 1500 \ (\mathrm{NO}_2), \ 1435, \ 1400, \\ 1360, \ 1325 \ (\mathrm{NO}_2), \ 1140, \\ 1120, \ 1005, \ 955, \ 860, \\ 770, \ 660 \end{array}$	$\begin{array}{c} 3200-2700 \ (\mathrm{br., NH}), \ 1625, \\ 1590, \ 1540 \ (\mathrm{NO}_2), \ 1505, \\ 1470, \ 1435, \ 1380, \ 1370, \\ 1320 \ (\mathrm{NO}_2), \ 1220, \ 1078, \\ 980, \ 860, \ 780, \ 700 \end{array}$
Molecular formula ^a	$\mathrm{C}_{13}\mathrm{H}_{11}\mathrm{N}_5\mathrm{O}_2$	$C_{13}H_{10}N_6O_4$	$C_{14}H_{13}N_5O_2$	$C_{12}H_{10}N_8O_2$	$C_{11}H_9N_7O_2$
mp° (from)	81-82 (50% <i>El</i> (OH)	159-160 (<i>Bi</i> OH)	122–123 (CHCl ₃ / light pet.)	104-105 (CHCl ₃ / light pet.)	190-191 (acetone/ light pet.)
yield (%)	77	5 <u>7</u> 3	52	64	62
R	pyrazol-5-yl	4-nitroimid- azol-1-yl	2-methylimid- azol-1-yl	1,2,4-triazol- 1-yl	tetrazol-5-yl
Compd. No.	61	က	4	10	Q

 NO_2 =Z · Me

^b In acetone-d₆.

5-Azolylpyrazoles

 $^{\mathrm{a}}$ Filemental analyses are in full agreement with the calculated values.

References

- ¹ Part II. Khan, M. A., Pinto, A. A. A., J. Heterocycl. Chem., in print.
- ² Taken in part from the Master's Thesis of *Freitas*, A. C. C., Instituto Militar de Engenharia, Rio de Janeiro, 1978.
- ³ Behr, L. C., Fusco, R., Jarboe, C. H., The Chemistry of Heterocyclic Compounds, Vol. 22, Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings. New York: Wiley. 1967.
- ⁴ Alonso, G., Madronero, R., Nebreda, L., Ann. Quim **72**, 897 (1976). C.A. **87**, 167969 (1977); Scot, F. L., O'Donovan, D. G., Reilly, J., J. Appl. Chem. **2**, 368 (1952), C.A. **48**, 3354 (1954); Pollak, A., Polanc, S., Stanovnik, B., Fisher, M., Mh. Chem. **103**, 1591 (1972); Finar, I. L., Manning, M., J. Chem. Soc. **1961**, 2733; Ainsworth, C., J. Amer. Chem. Soc. **78**, 4475 (1956); Fedetova, A. P., Kazymov, A. V., Shchelkina, E. P., U.S.S.R. Patent, **1969**, 245, 554, C.A. **72**, 3491 (1970); Polanc, S., Verbek, B., Sek, B., Stanovnik, B., Tisler, M., J. Org. Chem. **39**, 2143 (1974).
- Verge, J. P., Neville, C., Friedman, H., Ger. Offen. 1975, 2, 431, 775, C.A. 83, 10079 (1975); Rufer, C., Schwarz, K., Kessler, H. J., Ger. Offen. 1975, 2, 412, 656, C.A. 84, 4960 (1976); Rufer, C., Schwarz, K., Winterfeldt, E., Justus Liebigs Ann. Chem. 1975, 1465.
- ⁶ Khan, M. A., Freitas, A. C. C., Rev. Latinoamer. Quim., in print.
- 7 Finnegan, W. G., Henry, R. A., Lofquist, R., J. Amer. Chem. Soc. 80, 3908 (1958).
- ⁸ Khan, M. A., Freitas, A. C. C., J. Heterocycl. Chem. 17, 1603 (1980).
- ⁹ Farghar, R. G., Pyman, F. L., J. Chem. Soc. 1919, 217.